
Int. J. Solids Structures Vol. 30, No. II, pp. 1513-1526, 1993
Printed in Great Britain

0020-7683/93 56.00+.00
© 1993 Pergamon Press Ltd

THE HERTZ FRICTIONAL CONTACT BETWEEN
NONLINEAR ELASTIC ANISOTROPIC BODIES

(THE SIMILARITY APPROACH)

F. M. BORODICH
Division of Technical Mechanics, Moscow Institute of Radio Engineering, Electronics and

Automation, 78 Vemadsky prosp., Moscow, 117454, Russia

(Received 24 October 1991; in revised form 20 August 1992)

Abstract-Self-similarity and similarity aspects of the three-dimensional Hertz problem of contact
between two nonlinear elastic anisotropic bodies are considered under various boundary conditions:
frictionless, adhesive, frictional. It is assumed that in a problem with friction the contact region
consists of the following parts: in the inner part the interfacial friction must be sufficient to prevent
any slip taking place between the bodies and in the outer part the friction must satisfy the Coulomb
frictional law. The qualitative conclusions on the character of changes to the contact region and
approach of the bodies are described exactly. A formula similar to the empirical law of Meyer is
drawn up exactly without solving the field equations. The results are applied in an analysis of the
Hertz impact problem with friction.

I. INTRODUCTION

The complete analytic solutions to the Hertz problems of finding stress fields that arise
when two deformable bodies are pressed together were obtained only for isotropic or
transversely isotropic linear elastic bodies. In 1881, Hertz analysed the three-dimensional
problem of normal frictionless contact between two homogeneous, isotropic, linear elastic
bodies making the following approximating assumptions: (i) the shapes of the bodies are
described by forms; (ii) the size of the contact region is small with respect to the smallest
radius ofcurvature of the two bodies and the boundary-value problems for both bodies are
formulated as for half-spaces; (iii) the contact region is an ellipse. Working with these
assumptions Hertz applied some known results of potential theory.

The solutions of axisymmetric problems of frictionless contact, in the cases when the
shapes of the punches are described by a monomial, were obtained by Shtaerman (1939)
(the degree ofthe monomial is even) and Galin (1953) (the degree ofthe monomial is positive
rational). Kil'chevskii (1976) applied the Shtaerman results (1939) to the consideration of
axisymmetric impact problems.

Some axisymmetric adhesive contact problems for linear elastic isotropic bodies were
solved by Mossakovskii (1954, 1963), Goodman (1962) and Spence (1968). Spence showed
that, for the indentor described by a power law, the solution of this problem is self-similar.
He also solved the same problem for a punch with the shape given by a general polynomial.

The frictional self-similar contact problems in the axisymmetrical case were considered
by Spence (1975). Spence's results were extended to transversely isotropic bodies by Turner
(1980). The various contact problems of isotropic elasticity with friction were also con
sidered by Galin (1953), Vermeulen and Johnson (1964), Keer (1967), Gladwell (1980),
Spektor (1981), Bryant and Keer (1982), Johnson (1985), Kalker (1985), Hills and Sackfield
(1987), etc.

The three-dimensional problem offrictionless contact and impact ofanisotropic bodies
(in Hertz's approximation) was analysed by Willis (1966). In this analysis the functional
form of the pressure distribution between the bodies was found explicitly but a complete
solution was not obtained. It is well known that even the displacements produced by a
concentrated normal load on an anisotropic half-space cannot be found analytically;
correspondingly, it is unreasonable to expect the complete analytic solution to the aniso
tropic contact problem. For nonlinear bodies the Hertzian contact problems were also only
solved approximately [see references in Johnson (1985)].
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Evidently we cannot find the analytical solution to the considered problem of the
frictional contact between nonlinear elastic bodies but we extract as much insight into the
behavior of the solution as possible, regarding contact regions and charactcr of dependence
on load without actually solving any field equations. Our consideration is based on similarity
methods which have been used only recently to consideration of problems of contact
between nonlinear axisymmetric and three-dimensional anisotropic bodies in frictionless
cases only [see e.g. Borodich (1988b, 1989, 1990), Hill et al. (1989) and Ston1kers (1989)].

It is shown that if the distance between two bodies is determined by an arbitrary
positive and homogeneous function of planc Cartesian coordinates and the stress potential
is a homogeneous function of the strain tensor, the solution of such a problem is self-similar
for any of the following boundary conditions: adhesive, frictional or frictionless. It is
shown that the similarity consideration provides the functional forms of the tangential
displacements within the inner contact region. We also consider a two-parameter similarity
transformation which transforms the solution of one contact problem into the solution of
another. Using the similarity properties of the solutions we obtain the qualitative con
clusions on the character ofchanges of the contact region and approach of the bodies. These
conclusions generalize the empirical Meyer's hardness law and semi-empirical formulae of
Bowden and Tabor (1964). We apply these conclusions to the analysis of some known
experimental results and to the problem of Hertzian collision between two nonlinear elastic
bodies. In the cases of isotropic or transversely isotropic linear elastic bodies the impact
problems are solved exactly using the results of Spence (1968) and Turner (1980).

2. FORMULATION OF THE CONTACT PROBLEM

We consider two bodies contacting together so that the resultant force between them
is P and there is only contact over a small region of the surface of each. The Hertz contact
problem is formulated in detail in many works [see e.g. Gladwell (1980), Johnson (1985)
and Willis (1966)]. Hertz assumed that the distance between two bodies is determined by a
quadratic form. Here we consider the bodies with more general shapes, the particular case
of which are quadratic forms.

Let us place the origin of Cartesian x I , X 2, X j - and x I, X 2, x:\ -coordinates at the point
of initial (in the unstressed state) contact between two bodies. We combine the OXjX2 plane
with the common plane tangent to the surfaces of the bodies at the point of the contact and
the xj and x)" -axes are directed along the inward normals of the bodies.

We shall denote the quantities referring to the body xt ~ 0 by a superscript "plus".
and those referring to the second body by a superscript "minus" sign. Then the equations
of the surfaces of the bodies are given as

(I)

where f+ and f- are certain functions of the coordinates.
In Hertzian formulation the resultants of compressive forces are always assumed to

lie on the xt and x)" -axes.
After the bodies are compressed together, displacements u-+- and u are generated.

Suppose that the relative approach of the centers of gravity is rx > O. Then, at all points of
the region of contact we have

u) +u, = 'X-I f=f+ +f . (2)

In Hertzian formulation it is also supposed that the solution valid near the contact
region could be found by replacing each body by a half-space, while retaining the boundary
condition (2). Then the half-space xt ~ 0 has a right-hand Cartesian system, but x:\ ~ 0
has a left-hand system.

Finally, when the forms of the bodies fl (x I, X 2) and f (x h x 2) and the compressing
force P are given, we must find the region G on the boundary plane R 2 of the half-spaces
at the points at which the bodies are in mutual contact, the quantity!Y. represents the elastic
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approach of the bodies, displacements u+ and u- and stresses au and ail the points of half
spaces (R~)+ and (R~)-.

In the problems considered, the compressing force P is included as a parameter, so we
shall write it among the arguments of the unknown quantities. Note that we may take as
parameters of the contact problem some other quantities, e.g. the approach of bodies CI. or
the size of the contact region I. The parameter I was used by Mossakovskii (1963), Spence
(1968) and Hill and Storiikers (1990), the parameter CI. was used by Galanov (1981).

It is convenient to introduce the conventions that if quantities are written without
superscripts plus and minus then they are applied equally to both bodies and that Latin
suffixes take the values I, 2, 3.

The sought quantities must satisfy in each of the bodies the following conditions:
The equations of equilibrium

aijix, P) = 0, (3)

where differentiation with respect to Xj is denoted by ,j and the summation convention is
employed.

The constitutive relationships for elastic bodies one can write in the following form :

(4)

where U is the stress potential (elastic energy). The material behavior characterized by (4)
may be anisotropic or isotropic, depending on the form of the stress potential U.

The conditions at infinity:

u(x,P) -+0, (xT+x~+xD -+ 00.

The boundary conditions on the x 3 = °surface which include the following:

(i) conditions in the contact region, i.e. for (x I, X2) E R 2\G(p)

(ii) integral conditions

ff a33 (x lo x2,0,P)dx\ dX2 = -P;
G(P)

(5)

(6)

(7)

(iii) a condition within the contact region, i.e. for (x 1, X2) E G(P) U oG(P), where oG
is the boundary of the open region G, namely condition (2) which is rewritten in the form:

(8)

and in addition two more conditions, which depend on considering a contact problem. In
the frictionless contact problem for the vector of tangential stresses -r(x 1, X 2, P) == (a 31 (x \,
X2, 0, P), a32(;t"lo X2, 0, P)) we have

(9)

In the adhesive contact problem there is no relative slip between the bodies within the
contact region, the values of v\ == ut - ui and V2 == ui - Uz within this region cannot
change with augmentation of the force. This is expressed by
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(10)

In the frictional contact problem it is assumed that the contact region consists of the
following parts: in the inner part G1 the interfacial friction must be sufficient to prevent
any slip taking place between the bodies, i.e. eqn (10) holds, and in the outer part GIPI the
friction must satisfy the Coulomb frictional law. These conditions are written as:

(11)

where eis the coefficient of friction (Spektor, 1981).

3. SELF-SIMILAR CONTACT PROBLEMS

Now we highlight the general properties of contact problems. Here we shall use the
self-similarity technique. Similarity in problems of mathematical physics (in the case when
only scaling is used) is directly connected with the concept of the quasi-homogeneous
function [see e.g. Borodich (l988a)] and it is defined below.

Definition (Arnold et al., 1982). The function 9 with arguments XI, ... , Xn is called a
quasi-homogeneous function of degree d with weights f3 I, ... , f3n if for any 2 > 0 we have

(12)

Evidently, the self-similarity concept follows from the quasi-homogeneous concept.
Indeed, let any variable Xi be separated, i.e. it plays the role of a parameter. Let us assume
that i = n. If we set 2 = x;; liP. then from (12) we have

(13)

Le. we have reduced the number of variables. The functions such as the function in (13) are
called the self-similar functions.

If we assume all the functions in the contact problems (3)-(11) to be quasi-homo
geneous ofdifferent degrees and different weights, then we find that the following conditions
are fulfilled:

(i) the function of distance f(x" X2) between two contacting bodies is determined
by an arbitrary positive and homogeneous function of degree d, where d:;::;: I, of plane
Cartesian coordinates, i.e. the following conditions are satisfied:

f(X" X2) > 0, (Xl> X2) ER 2\{0},

.[(Xl> X2) Eel (R2\{0}),

f(h"h 2)=2df(XI,X2)' d:;::;:l, V2>0; (14)

(ii) the stress potentials U+ and U~ for each of the bodies are homogeneous functions
of degree J1. + I with respect to the components of the strain tensor 13kf, i.e.
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(iii) the weights of the arguments Xb X2, X3, Pare

PI=I, P2=1, P3=1, P4=a, a:=2+jl(d-l).

We can now formulate the following theorem of self-similarity:

1517

(15)

(16)

Theorem 1. Let the distance between contacting anisotropit: elastic bodies be determined
by the function f satisfying (14), and the stress potential u satisfying (15).

Let the functions u (x, PI), (Jidx, PI), region G(P I) and quantity rx (P I) give the
solution of the contact problems (3)-(11) for these bodies.

In addition, assume G(PI) and G1 (PI) are star-shaped regions in R2
, then the solution

of this problem for any positive force P will be given by:

u(X,P) = k-du(kx,P 1), (17)

6ij(X,P) = k l
-

d6ij(kx,P I), (18)

Uij(X, P) = k-/«d- I) (Jij(kx, PI), (19)

rx(P) = k-drx(P I), (20)

where

k = (P I/p)I/[2+I'(d- lJ), i.e. PI = JC1 P, (21)

and both the contact regions G and GI are changed by the homoteteous transformations:

[(Xb X2) E G(P)] <:> [(kXb kX2) E G(P I)],

[(XI, X2) E G 1(P)] <:> [(kx b kX2) E G I (PI)].

Proof From (19) one obtains

aUij(X, P) = k-I'(d- I) a(Jij(~,PI) aei
aXj aei axj '

(22)

(23)

where ()ij is the Kroneker delta.
However, according to the assumption of the theorem, the uij(~, PI) satisfy (3).

Therefore, (23) shows that the (Jij(X, P) satisfy (3) too.
Then using (19) and the assumption that (Jij(e, PI) satisfy (4), it can be shown that

On the other hand, using (18) it can be shown that

(24)

aU[6k/(~' PI)]
a6ij(~, PI)

aU[k(d-I)6k/(X, P)] a6mn (X, P)

a6mn (X,P) a6ii~,pa·
(25)

By substituting (25) and (15) in (24) one obtains
SAS 30:11-6
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(26)

Therefore, (26) shows that (J;/x, P) and c,/x, P) satisfy (4).
The definition of the functions u,(x, P) implies that they vanish at infinity.
The validity of the conditions (6)--(8) is proved in the same way:

(J 3;(X" X2, 0, P) I(.<,.X 2)ER 2\G(PI = k--~(d- I)(J 3/kx I, kX2, 0, k" P) I(x, ..,,)ER'\GIP)

= kll(l-d)(J3j(~ I, ~2,0, PJI(("(2)ER'\G(P,) = O.

ff(J33(X" X2, 0, P) dx} dX2 = k 2 ffk -1I(d- 1)(J33(kx" kX2' 0, k"P) d(kxl) d(kx 2)
G(P) G(P)

- k-/1(d- 1)- 2 If ~ (j; ;; ° P ) dj; dj; - k-[II(d- 1)+ 21p - P- U33 ~h':o2, , 1 ":.1 ":.2 - - 1- -, .

G(P,)

Let (x), X2) EG(P) U oG(P), then one has

[uj (x, P) + U3 (x, P)] Ix,~ 0 = k-d[uj (,;, PI) - U3 (,;, PI)] I(,~o

= k-d[cx(P I) -f(kx" kX2)] = cx(P) -f(x" X2)'

The conditions (9)-(11) should be considered separately.
From (9) we have

and the theorem in the case of the frictionless contact problem has been proved.
In the case of adhesive contact the inner region G is equal to the whole contact region

G. Note that (17)-(21) show that the functions u,(x, P) are quasi-homogeneous functions
of degree dwith weights (1,1, I, a). Then for every positive quantity Aone has

ou,(x,JJ = A-d OU,(Ax, ~"i» = A-d ~u,(A~~"!lAa = A".d ou;(..1.x, A"P~
oP OP O(A" P) o(AaP) .

Next, let A = k = (P 1/P) I;" then

ou,(x,i>2 = k" __ dou,(kx,pd.
oP oP}

This and (22) ensure that on the surface X3 = 0 one has

OUP(X"X2'0,P)! =ka-dOUP(~"~2,0,PI)1 . (27)
oP (X,.X,)EG,(P) oP I «(,,(,jEG,(P,)

Finally, (27) together with the assumption that condition (10) is satisfied for PI' implies

In the case of the frictional problem the contact region consists of the inner adhesive
region and the outer annulus of slip. For the adhesive region G I (P) the boundary condition
is verified in the same way as in the adhesive problem and we should verify the validity of
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boundary condition (11) in the outer region R 2\G1 only. From (17), (19) and (22) one
obtains

and

However, according to the assumption of the theorem the vector of tangential stresses 't'(~ 1,

~2' PI) satisfies (11). Therefore, (28) shows that 't"p(xt> X2, P) satisfies (11) too.
The proof of Theorem 1 is now complete.
The theorem has pointed out the classes of self-similar contact problems which include

all previously considered self-similar contact problems of three-dimensional infinitesimal
elasticity as particular cases [see e.g. Spence (1968, 1975), Galanov (1981), Borodich (1983,
1988b, 1989, 1990), Hill et al. (1989), Stonlkers (1989) and Hill and Storakers (1990)].

The theorem provides the following qualitative corollaries which hold under the
assumptions that have been made above:

(i) The size I of the contact region varies in proportion to the load raised to the power
lla;

(ii) The approach of the bodies is proportional to the load raised to the power dla,
namely:

(29)

(30)

Indeed, the definition of the region G(P) by (22) implies that the size of the contact
area varies proportionally to k- 1 and this yields, after substituting from (21), the first
assertion. The second assertion follows from (20).

Note that from the solutions of the problems of contact between linear elastic bodies
in which d = 2 (Hertz, 1881; Willis, 1966) and from such solutions in which d = 2n and
d = sin, where sand n are natural [see e.g. Shtaerman (1939) and Galin (1953)] formulae
analogous to (29) and (30).

We now give the functional forms of the relative tangential displacements vp(xt> X2,

0, P) within the contact region in the contact problems considered.
From the conditions of adhesive contact one has

(31)

where v3 are certain functions of XI and X2'

On the other hand vp(xt> X2, 0, P) are the quasi-homogeneous functions of degree d
with weights (1, 1, 1, a). Then for every positive quantity,t one has

(32)

From (31) and (32) follows

(33)

In the polar coordinate system r, q>(XI = rcos q>, X2 = r sin q» by substituting ,t = r- I

in (33) one has for (XI, X2) E GI (P) :
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(34)

where wp are certain functions of the angle rp.
Note, that in the axisymmetric problem of adhesive contact of isotropic bodies the

corollary (34) was obtained by Spence (1968).
Above we assumed the resultants of compressive forces to lie always on the Xraxes

and therefore the moments of contact stresses about the x 1- and xTaxes are both zero. But
this assumption may be weakened in the following way:

Let moments M I (PI) and M 2 (P t ) both be zero for the compressive force PI, i.e.

(35)

Then, in the self-similar problems considered above, Mt(P) and M 2(P) are both zero for
any positive compressive force P. Indeed, by substituting (19) and (22) into (35), one has

Finally, note that although the actual contact boundary-value problem is non-steady
it can be made steady in terms of reduced variables when the problem is self-similar in the
way shown above [see eqn (13)]. Galanov (1981) showed in an example for an isotropic
medium that it is very convenient for numerical calculations of the stress and strain fields
to rewrite the contact problem in terms of reduced variables.

4. FRICTIONAL COLLISION OF ANISOTROPIC BODIES

In the same way as in the frictionless contact problems (Hertz, 1881 ; Willis, 1966) one
can extend Hertz's theory of impact to the frictional impact of two anisotropic nonlinear
bodies.

Let the bodies have masses m+ and m". Hertz's approximation is that, during the
impact, the distribution of stresses for any IX is the same as that obtained from the solution
of the corresponding static contact problem (Willis, 1966). Then, considering the motion
of the mass center of each body, we obtain:

m+m
-- -fi(P) = -P.

m++m

From (30) one has

By substituting (37) into (36), we have

(36)

(37)
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cP+Jl(d-I)]/d,' k _ m+ +m- k _ P CX-[2+Jl(d-I)I/d(p)

I - m+m-' 2 - I I •
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(38)

Multiplying both sides by aand integrating (provided a= V for t = 0, where V is the
relative speed of the bodies just before their collision) we obtain:

V 2 = _ 2d k k a[2+d+Jl(d-I)]/d
2+d+jl(d-l) I 2 •

(39)

At the moment of maximum compression the relative speed avanishes. Then the maximal
approach of the bodies a* is given by:

(2 d (d 1) 1 )d/[2+d+P(d- I)]= + + jl - __ V2d/[2+d+Jl(d.- I)J
(X* 2d k

l
k

2
•

This value is achieved at the moment t* which is calculated from (39) :

(40)

(41)

From (37) we can show that the maximum compressive force between bodies Pmax is

(

V)(2[2+ Jl(d-I)])/(2+d+ P(d-I»

P - k f2+Jl(d-l)l/d P (V) P (V)
max - 2CX ilc , max = max I VI • (42)

As an example, we consider the collision between elasto-plastic bodies. Such con
sideration is possible because the deformation theory of plasticity for an active process
conforms to the physically nonlinear theory of elasticity. Experimental points of the
Pmax '" V curve, which are obtained for a collision between flat and spherical soft steel
surfaces (d = 2) with radius 14.5 mm, (Bagreev, 1963), are presented in Fig. 1.

The experimental stress-strain curve for soft steel under compression can be described
by the relationship G '" 8°.

6 in the interval of 0.01 < 8 < 0.04. If we take VI 10 em S-l

Ul

1.4

1.0

ll.~
0.6

0.2

Fig. 1. Relation between maximal compressive force Prna>. and relative speed ofcollision V obtained
from (42) where p....(Vl ) = 175 N, VI = IOems- l

• (--) d= 2, J.I. = 0.6. (---) d=2, J.I.= 1
(Hertz solution). O-experimental data for soft steel specimens from Bagreev (1963).
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and Pmax = 175 N, we can draw the curves corresponding to computation from eqn (42)
and to the Hertz solution when f1. = 0.6 and f1. = I, respectively. Good agreement is obtained
between the first curve and the experimental points, as Fig. I shows.

Note that eqn (42) is independent of the choice of boundary conditions (9)-(11).

5. A TWO-PARAMETER TRANSFORMATION OF SIMILARITY

Let us now consider a more general transformation of the initial contact problem (for
simplicity we shall consider a rigid punch pressing in a nonlinear half-space). In this
transformation one punch is replaced by another.

Let the function of the shape fl (x I, x 2) of the first punch be transformed by tension
Al times along the XI and X2 axes and ..1. 2 times along the X3 axis (see Fig. 2), i.e. the function
of the shape f(x!> X2) of the second punch is given by

(43)

Then we are able to give a formulation of the following theorem of similarity.
Theorem 2. Let the shape ofa punch be determined by any positive function fl'
Let the punch be pressed in an anisotropic nonlinear elastic half:space with stress

potential U satisfving (15) .
Let thefunctions u7(x, PI), 0"0(x, PI), the quantity a*(P j ) and the regions G*(P I ) and

Gr(P I) give the solution of the contact problems (3)-(11) for this punch and a pressing
force PI'

In addition, assume G*(PI) and Gr(P j ) are star-shaped regions in R 2
•

Then, the solution of this problem for the other punch, whose shape is determined by
function f satisfying (43), pressed in the half-space by the force

(44)

will be given by u(x, P), O"ij(X, P), a(P), namely

_ (..1. 2Y * 1 - I P)
O"ij(X, P) - I~} O"U(l'.l X, I,

and both contact regions G(P) and G I (P) are altered by homoteteous transformations

(45)

(46)

(47)

(a) (bl r
_------_ ",f

A1X2"'---"---""" - .... ,

A2X3

Fig. 2. Transformation of similarity with parameters )., and ,1,2: (a) Initial punch compressed by a
loadP,; (b) transformed by (43) punch compressed by a load P .W-fil}.iP,.
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[(XI' X2) E G(P)] <:> [(AllXI, All X2) E G*(P I)],

[(XI> X2) E G I (P)] <:> [(All Xl, All X2) E G1(P I)].

1523

(48)

The proof of Theorem 2 is demonstrated in the same way as the proof of Theorem 1,
i.e. by the direct verification of the validity of all conditions (3)-(11) for the collection of
the functions given by (43)-(48).

Note that if the shape function of punch is determined by an arbitrary positive and
homogeneous function of degree d, i.e. it is satisfied by conditions (14), then Theorem 1
follows from Theorem 2. Indeed, if we take AI = k- t, and A2 = k- d

, then (43)-(48) trans
form in (17)-(22).

6. A THEORETICAL STUDY OF HARDNESS TESTS

Hardness tests (Brinell, 1901; Meyer, 1908, and others) have long been the preferred
method of assaying the mechanical properties of metals during forming operations [see
references in Hill et al. (1989) and Borodich (1989)].

In practice, it is frequently necessary to investigate the character of the interaction
between spherical punches and a physically nonlinear foundation. A new series of exper
iments must be performed, however, when the radius of the sphere is changed.

Meyer's empirical hardness law shows

P",f', (49)

where K is some material constant. In the case of spherical punches this constant lies in the
interval 2 < K < 3. The semi-empirical formula of Bowden and Tabor (1964) shows that

(50)

where m is another material constant and R is the radius of the punch.
Here, we obtain the exact formulae similar to the formulae (49), (50).
Let the shape of a punch be determined by the homogeneous function II of degree d.

We have from a test for the punch under load PI the quantities 1(1, PI) and IX(I, PI)'
Let us assume another punch, which is bigger than the first by a factor of e, Le. its

shape is determined by the function I such that l(xl> X2) = ell (XI> X2)'
Suppose that the material is nonlinear elastic with stress potential U satisfying (15).
Then the depth of indentation a(e, P) and size of contact region I(e, P) in the test for

the second punch under another load P will be given by

(51)

(52)

Indeed, it follows from Theorem 2 that in the case under consideration e = AIdA2 and
PIP! = Ar-!'A~, i.e.

(53)

(54)

Then substitution from (53) and (54) into (47) and (48) results in (51) and (52).
Note, that the formulae (51) and (52) are exact under the assumptions made above.
Evidently, the formulae (49) and (50) are the particular cases of the formulae (51) and

(52). Indeed, let the punches be spherical with radii R I and R, respectively. Then d = 2 and
e is equal to Ri/R. Using (51) and (52), we obtain
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o
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E
E

"

0.4

10 20

PIN)

o

""R-I.6mm

"'-R-9525mm

30

Fig. 3. Relation between the depth C( of indentation into anisotropic balsa wood specimen and load
P obtained from (56) where R, = 9.525 mm, PI = 10 N. O~xperimentaldata from Bowden and

Tabor (1964).

(55)

(56)

The last formulae were obtained for the frictionless case by Borodich (1989). Comparison
between (55) and (49), (50) leads to K = 2+ J1 and m = J1.

As an example, we examine the test of the penetration of spherical punches into the
surface ofan anisotropic wooden specimen. The results of this test are presented by Bowden
and Tabor (1964). Owing to the material's anisotropy (balsa wood, 67% saturation), the
contact region G is not a circle but resembles an ellipse. Bowden and Tabor (1964) showed
that I ~ P 1/28. It follows from the comparison of this relationship and eqn (55) that J1 = 0.8.
Taking only one value of the depth of penetration from the test: rx(R" Pd = 81.6.10 6 m
where PI = 10 Nand R 1 = 9.525 mm, we can now determine the other values of ex(R, P)
using eqn (56). Experimental and theoretical ex ~ P curves plotted by the method described
are shown in Fig. 3.

Note that the formulae (51), (52), (55) and (56) are valid for any of the boundary
conditions (9)-(11).

7. CONCLUSION

The actual contact boundary-value problem is non-steady but can be made steady in
terms of reduced variables when the problem is self-similar (Galanov, 1981; Borodich,
1983, 1988b, 1989, 1990; Hill et al., 1989; Storakers, 1989; Hill and Storakers, 1990). The
main condition of self-similarity is the condition that the distance between bodies is a
homogeneous function. Such functions are numerous. Quadratic forms and the fourth
degree forms are particularly special examples of such functions. And the classical Hertz
problem ofcontact, when it is assumed that the function of the distance is a quadratic form,
lies within the class pointed out.

We have shown that if the contact problem is self-similar then its properties are
independent of the choice of boundary conditions and are validity for both linear and
nonlinear, isotropic and anisotropic media. So, one can say that the self-similarity law of
change of the solutions is the general property of the considered problems.
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APPENDIX. COLLISION OF TWO LINEAR TRANSVERSELY ISOTROPIC BODIES

In Hertz's approximation the shapes of the bodies are described by quadratic forms and thus f is a
homogeneous function of degree d = 2. Then there is the exact transfer of Hertz's qualitative conclusions on the
character of the duration of the impact and the maximal approach:

(AI)

(A2)

Indeed, these conclusions follow from (40)-(41) with d = 2.
Consider the adhesive collision of elastic spheres with radii R+ and R-. Then in terms of polar coordinates

one can write

1
f ++f- =_r2

2R '
where
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Let the materials of the spheres be transversely isotropic for which the preferred directions are normal to the
OXI.x2-s~face. Then there are only five independent nonzero components of the compliance tensor. Using the
engmeenng components of the compliance tensor given by Lekhnitskii (1950) :

ell -VH -Vv

I:::1e22 -VB -Vy

e33 -vv -vv ). "33
E

£13 2(1 + v) 0"13

e2J 2(1 +v)
l"21e 12 2(1 + vH) all

where 2ei; = u,.j+Uj.,.
Introducing the elastic parameters a, b, c, y, and i5 (Turner, 1980):

[ . '.J"2I.-Vy

a = I-v~ ,

and also the parameters A, C, D, Ll:

C=C++C-, A = (a+c++a-c-·)!C,

D = (y+c+ -l'-C-)!C, Ll = (b+c· +b-c-)!C.

Turner (1980) obtained from Spence's solution the exact solution of the adhesive contact problem for
transversely isotropic spheres. From Turner's solution we get for transversely isotropic materials

where

rn2

l1>(k.) = l-k~(cosech!1tk.) Jo (cot~sinhk.~)d~ = 1-0.693Ik~+0.2254k"+··

(A3)

Finally, (A3) together with (AI) and (A2), gives the exact solutions of Hertz adhesive collision problems for
isotropic or transversely isotropic spheres.

For the isotropic materials A= I, v = VH = Vy , a = b = I. c = (I-v)//1, i5 = v/(I-v), where /1 are shear moduli
of the spheres. Thus, we have

A= I,

and

Note, that one could also obtain this value of the constant k, from Spence's solution.


